Search results for "lattice simulation"
showing 3 items of 3 documents
On the zero crossing of the three-gluon vertex
2016
We report on new results on the infrared behaviour of the three-gluon vertex in quenched Quantum Chormodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing t…
Time evolution of linearized gauge field fluctuations on a real-time lattice
2016
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.
Spectral function for overoccupied gluodynamics from classical lattice simulations
2019
We study the spectral properties of an overoccupied gluonic system far from equilibrium. Using classical Yang-Mills simulations and linear response theory, we determine the statistical and spectral functions. We measure dispersion relations and damping rates of transversally and longitudinally polarized excitations in the gluonic plasma, and also study further structures in the spectral function.